论文标题
张量子网络重新归一化研究对古典Heisenberg和$ \ mathrm {rp^2} $模型的跨界研究
Tensor Network Renormalization Study on the Crossover in Classical Heisenberg and $\mathrm{RP^2}$ Models in Two Dimensions
论文作者
论文摘要
我们使用Tensor-NetWork Renoralization(TNR)方法研究了经典的二维$ \ Mathrm {Rp^2} $和Heisenberg模型。由于低温下的相关长度非常大,这些模型的相图确定这些模型的相图一直具有挑战性和有争议。 TNR获得的转移矩阵的有限大小频谱可用于识别描述可能临界点的保形场理论。我们的结果表明,在零温度极限中,Heisenberg模型的紫外线固定点和Ferromagnetic $ \ Mathrm {Rp^2} $模型对应于具有中央电荷$ C = 2 $的综合场理论,并与两种独立的Nambu-Goldstone模式一致。另一方面,反铁磁性lebwohl-lasher模型的紫外线固定点,这是$ \ mathrm {rp^2} $模型的变体,似乎具有较大的中央电荷。这与有效的SO(5)对称性预期的$ C = 4 $一致。在$ t> 0 $时,在海森伯格和铁磁$ \ mathrm {rp^2} $模型中,光谱的收敛性不佳。此外,似乎没有适当的保形场理论匹配频谱的候选者,这显示了有效的中央电荷$ C \ sim 1.9 $。这些表明这两种模型在有限温度下都有一个单个无序阶段,尽管铁磁性$ \ mathrm {rp^2} $模型在$ \ mathbb {z} _2 _2 $涡流的解离的温度下表现出很强的交叉。
We study the classical two-dimensional $\mathrm{RP^2}$ and Heisenberg models, using the Tensor-Network Renormalization (TNR) method. The determination of the phase diagram of these models has been challenging and controversial, owing to the very large correlation lengths at low temperatures. The finite-size spectrum of the transfer matrix obtained by TNR is useful in identifying the conformal field theory describing a possible critical point. Our results indicate that the ultraviolet fixed point for the Heisenberg model and the ferromagnetic $\mathrm{RP^2}$ model in the zero temperature limit corresponds to a conformal field theory with central charge $c=2$, in agreement with two independent would-be Nambu-Goldstone modes. On the other hand, the ultraviolet fixed point in the zero temperature limit for the antiferromagnetic Lebwohl-Lasher model, which is a variant of the $\mathrm{RP^2}$ model, seems to have a larger central charge. This is consistent with $c=4$ expected from the effective SO(5) symmetry. At $T >0$, the convergence of the spectrum is not good in both the Heisenberg and ferromagnetic $\mathrm{RP^2}$ models. Moreover, there seems no appropriate candidate of conformal field theory matching the spectrum, which shows the effective central charge $c \sim 1.9$. These suggest that both models have a single disordered phase at finite temperatures, although the ferromagnetic $\mathrm{RP^2}$ model exhibits a strong crossover at the temperature where the dissociation of $\mathbb{Z}_2$ vortices has been reported.