论文标题

IF-CITY:可理解的公平城市计划,以衡量,解释和减轻不平等

IF-City: Intelligible Fair City Planning to Measure, Explain and Mitigate Inequality

论文作者

Lyu, Yan, Lu, Hangxin, Lee, Min Kyung, Schmitt, Gerhard, Lim, Brian Y.

论文摘要

随着人工智能(AI)的普遍性的日益普及,已经提出了许多视觉分析工具来检查公平性,但主要关注数据科学家用户。取而代之的是,应对公平性必须具有包容性,并涉及使用专门工具和工作流程的领域专家。因此,算法公平性需要特定于域的可视化。此外,尽管在AI公平方面进行了很多工作,但针对预测性决策,但对于公平的分配和计划,需要人类的专业知识和迭代设计才能整合无数的限制。我们提出了可理解的公平分配(IF-ALOC)框架,该框架利用了因果归因(为什么),对比度(为什么不)和反事实推理(如果,如果,如何,如何)帮助域专家评估和减轻分配问题的不公平性。我们将框架应用于公平的城市规划,以设计为各种居民类型提供平等获取便利和利益的城市。具体而言,我们建议一种交互式视觉工具,可理解的公平城市规划师(IF-CITY),以帮助城市规划师在各组中感知不平等,识别和归因不平等的来源,并减轻自动分配模拟和约束符合条件的建议,以减轻不平等。我们与来自多个国家的实践城市规划师一起演示和评估IF-CITY在纽约市的一个真实社区的使用和实用性,并讨论将我们的发现,应用和框架概括为其他用例和公平分配的应用。

With the increasing pervasiveness of Artificial Intelligence (AI), many visual analytics tools have been proposed to examine fairness, but they mostly focus on data scientist users. Instead, tackling fairness must be inclusive and involve domain experts with specialized tools and workflows. Thus, domain-specific visualizations are needed for algorithmic fairness. Furthermore, while much work on AI fairness has focused on predictive decisions, less has been done for fair allocation and planning, which require human expertise and iterative design to integrate myriad constraints. We propose the Intelligible Fair Allocation (IF-Alloc) Framework that leverages explanations of causal attribution (Why), contrastive (Why Not) and counterfactual reasoning (What If, How To) to aid domain experts to assess and alleviate unfairness in allocation problems. We apply the framework to fair urban planning for designing cities that provide equal access to amenities and benefits for diverse resident types. Specifically, we propose an interactive visual tool, Intelligible Fair City Planner (IF-City), to help urban planners to perceive inequality across groups, identify and attribute sources of inequality, and mitigate inequality with automatic allocation simulations and constraint-satisfying recommendations. We demonstrate and evaluate the usage and usefulness of IF-City on a real neighborhood in New York City, US, with practicing urban planners from multiple countries, and discuss generalizing our findings, application, and framework to other use cases and applications of fair allocation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源