论文标题

$ \ infty $ - 弹性问题在Riemannian歧管上

The $\infty$-elastica problem on a Riemannian manifold

论文作者

Gallagher, Ed, Moser, Roger

论文摘要

我们考虑以下问题:在所有具有固定长度以及固定端点和切线的曲线中,在任何给定的完整的Riemannian歧管$(m,g)$中,在端点上,将曲率的$ l^\ infty $规范最小化。我们表明,该问题的解决方案以及更广泛的曲线必须满足二阶ode系统。从该系统中,我们获得了一些有关曲线行为的几何信息。

We consider the following problem: on any given complete Riemannian manifold $(M,g)$, among all curves which have fixed length as well as fixed end-points and tangents at the end-points, minimise the $L^\infty$ norm of the curvature. We show that the solutions of this problem, as well as a wider class of curves, must satisfy a second order ODE system. From this system we obtain some geometric information about the behaviour of the curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源