论文标题

深度约束最小二乘,用于盲图超分辨率

Deep Constrained Least Squares for Blind Image Super-Resolution

论文作者

Luo, Ziwei, Huang, Haibin, Yu, Lei, Li, Youwei, Fan, Haoqiang, Liu, Shuaicheng

论文摘要

在本文中,我们通过重新制定的降解模型和两个新型模块来解决盲图超分辨率(SR)的问题。遵循盲目SR的常见实践,我们的方法提议提高内核估计以及基于内核的高分辨率图像恢复。更具体地说,我们首先将降解模型重新重新制定,以便可以将脱毛的内核估计转移到低分辨率空间中。最重要的是,我们引入了动态的深线性滤波器模块。它不能在所有图像上学习固定的内核,而是可以自适应地在输入条件下生成脱毛的内核权重,并产生更强大的内核估计。随后,使用深度限制的最小二乘滤波模块来基于重新制定和估计的内核生成干净的特征。然后将Deblurred功能和低输入图像功能馈入双路径结构化SR网络,并恢复最终的高分辨率结果。为了评估我们的方法,我们进一步对包括Gaussian8和Div2KRK在内的多个基准进行评估。我们的实验表明,针对最新方法,提出的方法可以提高准确性和视觉改进。

In this paper, we tackle the problem of blind image super-resolution(SR) with a reformulated degradation model and two novel modules. Following the common practices of blind SR, our method proposes to improve both the kernel estimation as well as the kernel-based high-resolution image restoration. To be more specific, we first reformulate the degradation model such that the deblurring kernel estimation can be transferred into the low-resolution space. On top of this, we introduce a dynamic deep linear filter module. Instead of learning a fixed kernel for all images, it can adaptively generate deblurring kernel weights conditional on the input and yield a more robust kernel estimation. Subsequently, a deep constrained least square filtering module is applied to generate clean features based on the reformulation and estimated kernel. The deblurred feature and the low input image feature are then fed into a dual-path structured SR network and restore the final high-resolution result. To evaluate our method, we further conduct evaluations on several benchmarks, including Gaussian8 and DIV2KRK. Our experiments demonstrate that the proposed method achieves better accuracy and visual improvements against state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源