论文标题
具有可证明保证的平行虚拟机放置
Parallel Virtual Machines Placement with Provable Guarantees
论文作者
论文摘要
网络功能虚拟化(NFV)具有虚拟机(VMS)中网络算法的按需部署的潜力。但是,在大云中,VM资源分配会导致延迟,从而阻碍了这种NFV部署的动态缩放。并行资源管理是提高绩效的有希望的方向,但它可能会大大增加沟通开销和部署尝试的下降比率。我们的工作分析了各种位置算法的性能,并提供了经验证据,即最新的并行资源管理大大提高了确定性算法的下降比率,但几乎不会影响随机算法。因此,我们介绍APSR-一种有效的并行随机资源管理算法,仅需要少数主机的信息,并动态调整并行性的程度,以提供可证明的下降比率保证。我们正式分析APSR,在实际工作负载上对其进行评估,并将其集成到流行的OpenStack Cloud Management平台中。我们的评估表明,APSR匹配其他并行调度程序提供的吞吐量,同时达到下降率降低13倍,而在通信开销中降低了85%以上。
Network Function Virtualization (NFV) carries the potential for on-demand deployment of network algorithms in virtual machines (VMs). In large clouds, however, VM resource allocation incurs delays that hinder the dynamic scaling of such NFV deployment. Parallel resource management is a promising direction for boosting performance, but it may significantly increase the communication overhead and the decline ratio of deployment attempts. Our work analyzes the performance of various placement algorithms and provides empirical evidence that state-of-the-art parallel resource management dramatically increases the decline ratio of deterministic algorithms but hardly affects randomized algorithms. We, therefore, introduce APSR -- an efficient parallel random resource management algorithm that requires information only from a small number of hosts and dynamically adjusts the degree of parallelism to provide provable decline ratio guarantees. We formally analyze APSR, evaluate it on real workloads, and integrate it into the popular OpenStack cloud management platform. Our evaluation shows that APSR matches the throughput provided by other parallel schedulers, while achieving up to 13x lower decline ratio and a reduction of over 85% in communication overheads.