论文标题
算术密度的组合公式
Combinatorial formulas for arithmetic density
论文作者
论文摘要
令$ d_s $表示子集$ s \ subseteq \ mathbb n $的算术密度。我们在\ Mathbb c $,$ | q | <1 $中得出一个功率系列,并带有与整数分区和整数组成相关的coëfficients,在限制为$ q \至1 $的$ q \ to radyly中产生$ 1/d_s $。
Let $d_S$ denote the arithmetic density of a subset $S \subseteq \mathbb N$. We derive a power series in $q\in \mathbb C$, $|q|<1$, with coëfficients related to integer partitions and integer compositions, that yields $1/d_S$ in the limit as $q\to 1$ radially.