论文标题

具有以用户为中心和基于缓存的车辆边缘网络的有效内容交付具有截止日期约束的异质需求

Efficient Content Delivery in User-Centric and Cache-Enabled Vehicular Edge Networks with Deadline-Constrained Heterogeneous Demands

论文作者

Pervej, Md Ferdous, Jin, Richeng, Lin, Shih-Chun, Dai, Huaiyu

论文摘要

现代连接的车辆(CVS)经常需要各种类型的内容,以进行关键任务决策和船上用户的娱乐。这些内容必须在严格的截止日期内完全交付给请求者简历,即现有无线电访问技术(RAT)解决方案可能无法确保。在以上考虑因素的激励下,本文利用了基于软件定义的基于用户的虚拟小区(VC)的RAT解决方案来利用车辆边缘网络(VEN)中的内容缓存,以从接近边缘服务器中传递所需的内容。此外,为了捕获简历的异质要求,我们在其内容请求模型中引入了偏好的折衷方案。为此,我们为内容放置,简历调度,VC配置,VC-CV关联和无线电资源分配提出了一个联合优化问题,以最大程度地减少长期内容交付延迟。但是,关节问题是高度复杂的,无法在多项式时间内有效解决。因此,我们将原始问题分解为缓存位置问题,并且鉴于缓存位置策略,内容交付延迟最小化问题。我们使用深度加固学习(DRL)作为第一个子问题的学习解决方案。此外,我们将延迟最小化问题转换为基于优先级的加权总和(WSR)最大化问题,该问题可以解决最大的两分匹配(MWBM)和简单的线性搜索算法。我们的广泛仿真结果证明了该方法与现有基线相比,就缓存命中率(CHR),截止日期违规和内容交付延迟而言。

Modern connected vehicles (CVs) frequently require diverse types of content for mission-critical decision-making and onboard users' entertainment. These contents are required to be fully delivered to the requester CVs within stringent deadlines that the existing radio access technology (RAT) solutions may fail to ensure. Motivated by the above consideration, this paper exploits content caching in vehicular edge networks (VENs) with a software-defined user-centric virtual cell (VC) based RAT solution for delivering the requested contents from a proximity edge server. Moreover, to capture the heterogeneous demands of the CVs, we introduce a preference-popularity tradeoff in their content request model. To that end, we formulate a joint optimization problem for content placement, CV scheduling, VC configuration, VC-CV association and radio resource allocation to minimize long-term content delivery delay. However, the joint problem is highly complex and cannot be solved efficiently in polynomial time. As such, we decompose the original problem into a cache placement problem and a content delivery delay minimization problem given the cache placement policy. We use deep reinforcement learning (DRL) as a learning solution for the first sub-problem. Furthermore, we transform the delay minimization problem into a priority-based weighted sum rate (WSR) maximization problem, which is solved leveraging maximum bipartite matching (MWBM) and a simple linear search algorithm. Our extensive simulation results demonstrate the effectiveness of the proposed method compared to existing baselines in terms of cache hit ratio (CHR), deadline violation and content delivery delay.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源