论文标题
Heisenberg组的双线性分数积分运算符的加权估计值
Weighted estimates for bilinear fractional integral operator on the Heisenberg group
论文作者
论文摘要
在本文中,我们介绍了Kenig和Stein的双线性分数积分运算符的类似物,介绍了Heisenberg Group $ \ Mathbb {H}^n $。我们完全表征了指数$α,β$和$γ$的指标,使操作员从$ l^{p}(\ Mathbb {h}^n,| x |^{αp})\ times l^{q}(Q}(\ Mathbb { $ l^{r}(\ mathbb {h}^n,| x |^{ - γr})$。
In this article, we introduce an analogue of Kenig and Stein's bilinear fractional integral operator on the Heisenberg group $\mathbb{H}^n$. We completely characterize exponents $α, β$ and $γ$ such that the operator is bounded from $L^{p}(\mathbb{H}^n, |x|^{αp})\times L^{q}(\mathbb{H}^n, |x|^{βq})$ to $L^{r}(\mathbb{H}^n, |x|^{-γr})$.