论文标题
重力理论的一致和非一致的变形
Consistent and non-consistent deformations of gravitational theories
论文作者
论文摘要
我们研究了以连接四形形式编写的一系列重力理论的内部Abelianization版本,并研究了可以以一致的方式添加到它们的可能的相互作用术语。我们为2+1维和3+1维模型这样做。在后一种情况下,我们表明cartan-palatini和Holst动作不是其Abelianized版本的一致变形。我们还表明,侯赛因 - 古cha和欧几里得的自我双重动作是其Abelianized对应物的一致变形。这表明,如果可以量化后者,则有可能设计一种扰动方案,从而导致沿Smolin在90年代初期提出的界线量化欧几里得一般相对论。
We study the internally abelianized version of a range of gravitational theories, written in connection tetrad form, and study the possible interaction terms that can be added to them in a consistent way. We do this for 2+1 dimensional and 3+1 dimensional models. In the latter case we show that the Cartan-Palatini and Holst actions are not consistent deformations of their abelianized versions. We also show that the Husain-Kuchař and Euclidean self-dual actions are consistent deformations of their abelianized counterparts. This suggests that if the latter can be quantized, it could be possible to devise a perturbative scheme leading to the quantization of Euclidean general relativity along the lines put forward by Smolin in the early nineties.