论文标题

径向基础功能生成的非牛顿自然对流有限差分分析

Refined radial basis function-generated finite difference analysis of non-Newtonian natural convection

论文作者

Rot, Miha, Kosec, Gregor

论文摘要

在本文中,我们为在封闭的差分加热腔中的非牛顿液提供了精致的径向基函数生成的有限差(RBF-FD)溶液。非牛顿行为是用Ostwald-de Waele功率定律和Boussinesq近似效力进行建模的。问题域被分散的节点离散,而无需对它们之间的拓扑关系。这允许对解决方案过程进行琐碎的概括,以使复杂的三维(3D)域复杂化,这也可以通过在二维(2D)和3D几何形状中求解模仿多孔滤波器的二维(2D)和3D几何形状来证明。将2D中的结果与两种使用有限体积方法与两种不同的稳定技术结合使用的参考解决方案进行了比较,我们与参考数据达到了良好的一致性。使用分段线性节点密度函数在专用网状节点定位算法的顶部实现了细化,该函数可确保在域中心的中心中足够的节点密度,同时最大程度地提高了最强烈的动态的边界层中的节点密度。结果表明,与常规离散化相比,使用精致的方法以相同的精度获得结果,需要少5倍以上。本文还讨论了与不同方案的精制离散化讨论的收敛性,最高$ 2 \ cdot 10^5 $节点,方法参数的影响,边界层流动的行为,粘度的行为,粘度的行为以及所提出的解决方案程序的几何灵活性。

In this paper we present a refined Radial Basis Function-generated Finite Difference (RBF-FD) solution for a non-Newtonian fluid in a closed differentially heated cavity. The non-Newtonian behaviour is modelled with the Ostwald-de Waele power law and the buoyancy with the Boussinesq approximation. The problem domain is discretised with scattered nodes without any requirement for a topological relation between them. This allows a trivial generalisation of the solution procedure to complex irregular three dimensional (3D) domains, which is also demonstrated by solving the problem in a two dimensional (2D) and 3D geometry mimicking a porous filter. The results in 2D are compared with two reference solutions that use the Finite volume method in a conjunction with two different stabilisation techniques, where we achieved good agreement with the reference data. The refinement is implemented on top of a dedicated meshless node positioning algorithm using piecewise linear node density function that ensures sufficient node density in the centre of the domain while maximising the node density in a boundary layer where the most intense dynamic is expected. The results show that with a refined approach, more than 5 times fewer nodes are required to obtain the results with the same accuracy compared to the regular discretisation. The paper also discusses the convergence with refined discretisation for different scenarios for up to $2 \cdot 10^5$ nodes, the impact of method parametres, the behaviour of the flow in the boundary layer, the behaviour of the viscosity and the geometric flexibility of the proposed solution procedure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源