论文标题
大量的未包含的随机访问:利用角域的稀疏性
Massive Unsourced Random Access: Exploiting Angular Domain Sparsity
论文作者
论文摘要
本文研究了未包含的随机访问计划(URA)计划,以容纳众多与配备多个天线的基站通信的机器类型用户。现有作品采用开槽的传输策略来降低系统的复杂性;它们在耦合压缩传感(CCS)的框架下进行操作,该框架将外部树代码与内部压缩的传感代码相连,以缝制插槽消息。我们建议,通过利用角域中的MIMO通道信息,可以删除CCS中的树编码器/解码器所需的冗余以提高频谱效率,从而设计了未耦合的传输协议。为了执行活动检测和通道估计,我们提出了一个期望最大化的通用近似消息传递算法的通用近似算法,该算法具有马尔可夫随机场支持结构,该结构捕获了角域通道的固有聚类稀疏结构。然后,通过基于相似性识别每个活动用户的插槽分布通道,以聚类解码器的形式重建。我们提出了插槽平衡的K-均值算法作为聚类解码器的内核,解决了应用程序场景特定的约束和碰撞。广泛的模拟表明,与基于CCS的URA方案相比,所提出的方案在高光谱效率下实现了更好的错误性能。
This paper investigates the unsourced random access (URA) scheme to accommodate numerous machine-type users communicating to a base station equipped with multiple antennas. Existing works adopt a slotted transmission strategy to reduce system complexity; they operate under the framework of coupled compressed sensing (CCS) which concatenates an outer tree code to an inner compressed sensing code for slot-wise message stitching. We suggest that by exploiting the MIMO channel information in the angular domain, redundancies required by the tree encoder/decoder in CCS can be removed to improve spectral efficiency, thereby an uncoupled transmission protocol is devised. To perform activity detection and channel estimation, we propose an expectation-maximization-aided generalized approximate message passing algorithm with a Markov random field support structure, which captures the inherent clustered sparsity structure of the angular domain channel. Then, message reconstruction in the form of a clustering decoder is performed by recognizing slot-distributed channels of each active user based on similarity. We put forward the slot-balanced K-means algorithm as the kernel of the clustering decoder, resolving constraints and collisions specific to the application scene. Extensive simulations reveal that the proposed scheme achieves a better error performance at high spectral efficiency compared to the CCS-based URA schemes.