论文标题

通过GCD的奇数完美数字的新方法

A new approach to odd perfect numbers via GCDs

论文作者

Dris, Jose Arnaldo Bebita

论文摘要

让$ q^k n^2 $是一个奇怪的完美数字,具有特殊的Prime $ Q $。 Define the GCDs $$G = \gcd\bigg(σ(q^k),σ(n^2)\bigg)$$ $$H = \gcd\bigg(n^2,σ(n^2)\bigg)$$ and $$I = \gcd\bigg(n,σ(n^2)\bigg).$$ We prove that $G \times H = i^2 $。 (请注意,表明$ g \ mid i $和$ i \ mid h $都持有。之后,我们证明,如果$ g = h = i $,则$σ(q^k)/2 $不是平方的。其他自然和相关的结果将进一步得出。最后,我们猜想$$ \ mathscr {a} = \ {m:\ gcd(m,σ(m^2))= \ gcd(m^2,σ(m^2))\} $ $渐近密度零。

Let $q^k n^2$ be an odd perfect number with special prime $q$. Define the GCDs $$G = \gcd\bigg(σ(q^k),σ(n^2)\bigg)$$ $$H = \gcd\bigg(n^2,σ(n^2)\bigg)$$ and $$I = \gcd\bigg(n,σ(n^2)\bigg).$$ We prove that $G \times H = I^2$. (Note that it is trivial to show that $G \mid I$ and $I \mid H$ both hold.) We then compute expressions for $G, H,$ and $I$ in terms of $σ(q^k)/2, n,$ and $\gcd\bigg(σ(q^k)/2,n\bigg)$. Afterwards, we prove that if $G = H = I$, then $σ(q^k)/2$ is not squarefree. Other natural and related results are derived further. Lastly, we conjecture that the set $$\mathscr{A} = \{m : \gcd(m,σ(m^2))=\gcd(m^2,σ(m^2))\}$$ has asymptotic density zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源