论文标题

使用量子钻石显微镜的8 nm工艺节点芯片和3D电流分布的矢量磁电流成像

Vector Magnetic Current Imaging of an 8 nm Process Node Chip and 3D Current Distributions Using the Quantum Diamond Microscope

论文作者

Oliver, Sean M., Martynowych, Dmitro J., Turner, Matthew J., Hopper, David A., Walsworth, Ronald L., Levine, Edlyn V.

论文摘要

采用3D包装技术需要开发新的故障电子设备分析方法。为此,我们的团队正在开发一个称为量子钻石显微镜(QDM)的工具,该工具利用钻石中的氮空位(NV)集合,在环境条件下以广泛的视野和高空间分辨率实现矢量磁成像。在这里,我们介绍了在多层PCB中的8 nm翻转芯片IC和3D电流分布中2D电流分布的QDM测量。翻转芯片中C4凸起的磁场散发占主导地位的QDM测量值,但事实证明这些磁场可用于图像注册,并且可以减去以在微米尺度上解决模具中的相邻电流痕迹。 3D IC中的VIA仅显示BX和磁场,由于其垂直方向,并且很难用仅测量BZ分量的磁力计(与IC表面正交)检测到。使用多层PCB,我们表明QDM同时测量Bx,和Bz的能力对于从层之间的电流传递时从VIA中解析VIA是有利的。我们还展示了导电层之间的间距是如何由磁场图像确定的,以及它如何与PCB的设计规范一致。在我们最初为复杂3D电路中电流源提供进一步的Z深度信息的最初努力中,我们展示了如何从总结构的磁场图像中减去单个图层的磁场图像。这允许隔离信号层,可用于通过2D磁化的溶液绘制嵌入的电流路径。此外,本文还讨论了使用神经网络来识别2D电流分布及其分析3D结构的潜力。

The adoption of 3D packaging technology necessitates the development of new approaches to failure electronic device analysis. To that end, our team is developing a tool called the quantum diamond microscope (QDM) that leverages an ensemble of nitrogen vacancy (NV) centers in diamond, achieving vector magnetic imaging with a wide field-of-view and high spatial resolution under ambient conditions. Here, we present the QDM measurement of 2D current distributions in an 8-nm flip chip IC and 3D current distributions in a multi-layer PCB. Magnetic field emanations from the C4 bumps in the flip chip dominate the QDM measurements, but these prove to be useful for image registration and can be subtracted to resolve adjacent current traces in the die at the micron scale. Vias in 3D ICs display only Bx and By magnetic fields due to their vertical orientation and are difficult to detect with magnetometers that only measure the Bz component (orthogonal to the IC surface). Using the multi-layer PCB, we show that the QDM's ability to simultaneously measure Bx, By, and Bz is advantageous for resolving magnetic fields from vias as current passes between layers. We also show how spacing between conducting layers is determined by magnetic field images and how it agrees with the design specifications of the PCB. In our initial efforts to provide further z-depth information for current sources in complex 3D circuits, we show how magnetic field images of individual layers can be subtracted from the magnetic field image of the total structure. This allows for isolation of signal layers and can be used to map embedded current paths via solution of the 2D magnetic inverse. In addition, the paper also discusses the use of neural networks to identify 2D current distributions and its potential for analyzing 3D structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源