论文标题

Graphnli:在线辩论中基于图的自然语言推断模型

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

论文作者

Agarwal, Vibhor, Joglekar, Sagar, Young, Anthony P., Sastry, Nishanth

论文摘要

允许用户参与式参与的在线论坛已成为有关重要问题的公众讨论。但是,在这样的论坛上的辩论有时会升级为仇恨或错误信息的完全爆炸。理解和解决此类问题的重要工具是能够推断出答复是支持还是攻击其答复的帖子的论点关系。这种所谓的极性预测任务很困难,因为答复可能基于帖子之外的外部上下文以及预测其极性的答复。我们提出了Graphnli,这是一种基于图形的新型深度学习体系结构,它使用图形步行技术以原则性的方式捕获讨论线程的更广泛上下文。具体来说,我们提出了执行从帖子开始并捕获其周围上下文以生成帖子的其他嵌入的方法的方法。然后,我们使用这些嵌入来预测答复与回复帖子之间的极性关系。我们在一个在线辩论平台Kialo的精心辩论数据集上评估了模型的性能。我们的模型的总体准确性为83%,胜过包括S-Bert在内的相关基线。

Online forums that allow participatory engagement between users have been transformative for public discussion of important issues. However, debates on such forums can sometimes escalate into full blown exchanges of hate or misinformation. An important tool in understanding and tackling such problems is to be able to infer the argumentative relation of whether a reply is supporting or attacking the post it is replying to. This so called polarity prediction task is difficult because replies may be based on external context beyond a post and the reply whose polarity is being predicted. We propose GraphNLI, a novel graph-based deep learning architecture that uses graph walk techniques to capture the wider context of a discussion thread in a principled fashion. Specifically, we propose methods to perform root-seeking graph walks that start from a post and captures its surrounding context to generate additional embeddings for the post. We then use these embeddings to predict the polarity relation between a reply and the post it is replying to. We evaluate the performance of our models on a curated debate dataset from Kialo, an online debating platform. Our model outperforms relevant baselines, including S-BERT, with an overall accuracy of 83%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源