论文标题

不含PDE的,基于神经网络的涡流粘度模型,以及rans方程

A PDE-free, neural network-based eddy viscosity model coupled with RANS equations

论文作者

Xu, Ruiying, Zhou, Xu-Hui, Han, Jiequn, Dwight, Richard P., Xiao, Heng

论文摘要

大多数用于雷诺平均纳维尔 - 斯托克斯(RANS)模拟中的湍流模型是偏微分方程(PDE),描述了湍流量的运输。这样的数量包括用于涡流粘度模型的湍流动能和在差分应力模型中的雷诺应力张量(或其各向异性)。但是,这样的模型都在其稳健性和准确性方面都有局限性。受到其他科学领域的机器学习成功的启发,研究人员开发了数据驱动的湍流模型。最近,提出了一个具有嵌入式不变性的非局部矢量云神经网络,其能力在模拟层流中的被动示踪剂传输中证明了其能力。在这一成功的基础上,我们使用非局部神经网络映射来对K-Epsilon模型中的传输物理进行建模,并将其搭配到求解求解器,从而导致无PDE的涡流模型。我们证明了rans求解器的鲁棒性和稳定性,具有基于神经网络的湍流模型,该模型在周期性的参数几何形状的周期性丘陵上。我们的作品是使用矢量云神经网络作为耦合式rans模拟中传统湍流模型的一种概念证明。耦合的成功为雷诺压力传输模型的基于神经网络的仿真铺平了道路。

Most turbulence models used in Reynolds-averaged Navier-Stokes (RANS) simulations are partial differential equations (PDE) that describe the transport of turbulent quantities. Such quantities include turbulent kinetic energy for eddy viscosity models and the Reynolds stress tensor (or its anisotropy) in differential stress models. However, such models all have limitations in their robustness and accuracy. Inspired by the successes of machine learning in other scientific fields, researchers have developed data-driven turbulence models. Recently, a nonlocal vector-cloud neural network with embedded invariance was proposed, with its capability demonstrated in emulating passive tracer transport in laminar flows. Building upon this success, we use nonlocal neural network mapping to model the transport physics in the k-epsilon model and couple it to RANS solvers, leading to a PDE-free eddy-viscosity model. We demonstrate the robustness and stability of the RANS solver with a neural network-based turbulence model on flows over periodic hills of parameterized geometries. Our work serves as a proof of concept for using a vector-cloud neural network as an alternative to traditional turbulence models in coupled RANS simulations. The success of the coupling paves the way for neural network-based emulation of Reynolds stress transport models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源