论文标题
在动量空间中使用随机变化方法,将多体问题转换为光激发的半导体中的几个物体问题,SVM-K
Turning many-body problems to few-body ones in photoexcited semiconductors using the stochastic variational method in momentum space, SVM-k
论文作者
论文摘要
我们开发了一种有效的计算技术来通过随机变化方法(SVM)计算光激发半导体中的复合激子状态。电子气体与激子状态之间的多体相互作用通过传导带中的费米孔体现在问题中,当电子被从费米海中抽出以结合光激发的电子孔对时,引入了。我们考虑了复合物中可区分的颗粒,交换诱导的带隙重新归一化效果与电子孔交换相互作用之间的直接库仑相互作用。我们使用一种使我们能够避免通过传导带中低能电子状态施加的难度的技术提供了潜在矩阵元素的分析表达式。我们讨论了应执行计算的计算步骤,以及如何在复杂的平均粒子间距离和密度分布中提取单个颗粒的动能。
We develop an efficient computational technique to calculate composite excitonic states in photoexcited semiconductors through the stochastic variational method (SVM). Many-body interactions between an electron gas and the excitonic state are embodied in the problem through Fermi holes in the conduction band, introduced when electrons are pulled out of the Fermi sea to bind the photoexcited electron-hole pair. We consider the direct Coulomb interaction between distinguishable particles in the complex, the exchange-induced band-gap renormalization effect, and electron-hole exchange interaction between an electron and its conduction-band hole. We provide analytical expressions for potential matrix elements, using a technique that allows us to circumvent the difficulty imposed by the occupation of low-energy electron states in the conduction band. We discuss the computational steps one should implement in order to perform the calculation, and how to extract kinetic energies of individual particles in the complex, average inter-particle distances, and density distributions.