论文标题

使用计算机视觉进行硬件保证的PCB组件检测

PCB Component Detection using Computer Vision for Hardware Assurance

论文作者

Zhao, Wenwei, Gurudu, Suprith, Taheri, Shayan, Ghosh, Shajib, Sathiaseelan, Mukhil Azhagan Mallaiyan, Asadizanjani, Navid

论文摘要

光学域中的印刷电路板(PCB)保证是一个关键的研究领域。尽管使用图像处理,计算机视觉(CV)和机器学习(ML)有许多现有的PCB保证方法,但PCB字段是复杂且越来越不断发展的,因此需要新的技术来克服新兴问题。现有的基于ML的方法的表现优于传统的CV方法,但是它们通常需要更多的数据,具有较低的解释性,并且在出现新技术时可能很难适应。为了克服这些挑战,可以与ML方法同时使用CV方法。尤其是,人解剖的CV算法(例如提取颜色,形状和纹理特征的算法)提高了PCB的可解释性。这允许合并先验知识,从而有效地减少了可训练的ML参数的数量,因此,在训练或重新训练ML模型时,获得高精度所需的数据量。因此,本研究探讨了使用语义数据进行PCB组件检测任务的各种常见计算机视觉特征的好处和局限性。这项研究的结果表明,颜色特征证明了PCB组件检测的有希望的性能。本文的目的是促进硬件保证,计算机视觉和机器学习社区之间的合作。

Printed Circuit Board (PCB) assurance in the optical domain is a crucial field of study. Though there are many existing PCB assurance methods using image processing, computer vision (CV), and machine learning (ML), the PCB field is complex and increasingly evolving so new techniques are required to overcome the emerging problems. Existing ML-based methods outperform traditional CV methods, however they often require more data, have low explainability, and can be difficult to adapt when a new technology arises. To overcome these challenges, CV methods can be used in tandem with ML methods. In particular, human-interpretable CV algorithms such as those that extract color, shape, and texture features increase PCB assurance explainability. This allows for incorporation of prior knowledge, which effectively reduce the number of trainable ML parameters and thus, the amount of data needed to achieve high accuracy when training or retraining an ML model. Hence, this study explores the benefits and limitations of a variety of common computer vision-based features for the task of PCB component detection using semantic data. Results of this study indicate that color features demonstrate promising performance for PCB component detection. The purpose of this paper is to facilitate collaboration between the hardware assurance, computer vision, and machine learning communities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源