论文标题
使用明显的轮式假体预测柔软地形上的漫游者机动性
Predict the Rover Mobility over Soft Terrain using Articulated Wheeled Bevameter
论文作者
论文摘要
机器人的移动性对于任务成功至关重要,尤其是在柔软或可变形的地形上,复杂的轮土机械师通常会导致过度的车轮滑动和下沉,从而导致最终的任务故障。为了提高成功率,文献中使用了使用视觉,红外成像或基于模型的随机方法的在线移动性预测。本文提出了一种使用明显的轮式假设器的机上移动预测方法,该方法由力量控制的臂和仪器的仪器(带有力和视觉传感器)作为其最终效果。所提出的假设表模拟传统的地形力学测试,例如压力 - 链接和剪切实验,可以实时测量漫游车身体前方的接触参数,并预测支撑车轮在探测区域上的滑移和下沉。根据预测的移动性,漫游者可以选择一条更安全的路径,以避免危险区域,例如被Quicksand覆盖的区域。与文献相比,我们提出的方法可以避免复杂的地形力学建模和耗时的随机预测。它还可以减轻基于非接触视力的方法中引起的不准确问题。我们还进行了多个实验以验证所提出的方法。
Robot mobility is critical for mission success, especially in soft or deformable terrains, where the complex wheel-soil interaction mechanics often leads to excessive wheel slip and sinkage, causing the eventual mission failure. To improve the success rate, online mobility prediction using vision, infrared imaging, or model-based stochastic methods have been used in the literature. This paper proposes an on-board mobility prediction approach using an articulated wheeled bevameter that consists of a force-controlled arm and an instrumented bevameter (with force and vision sensors) as its end-effector. The proposed bevameter, which emulates the traditional terramechanics tests such as pressure-sinkage and shear experiments, can measure contact parameters ahead of the rover's body in real-time, and predict the slip and sinkage of supporting wheels over the probed region. Based on the predicted mobility, the rover can select a safer path in order to avoid dangerous regions such as those covered with quicksand. Compared to the literature, our proposed method can avoid the complicated terramechanics modeling and time-consuming stochastic prediction; it can also mitigate the inaccuracy issues arising in non-contact vision-based methods. We also conduct multiple experiments to validate the proposed approach.