论文标题

3D感知室内场景综合与深度先验

3D-Aware Indoor Scene Synthesis with Depth Priors

论文作者

Shi, Zifan, Shen, Yujun, Zhu, Jiapeng, Yeung, Dit-Yan, Chen, Qifeng

论文摘要

尽管最近从2D数据中学习3D感知图像合成的生成对抗网络(GAN)最近进步,但由于房间布局的多样性和内部的对象,现有方法无法对室内场景进行建模。我们认为室内场景没有共享的内在结构,因此只使用2D图像无法充分使用3D几何形状指导模型。在这项工作中,我们通过将深度作为3D之前填补了这一空白。与其他3D数据格式相比,深度更适合基于卷积的发电机制,并且在实践中更容易访问。具体而言,我们提出了一个双路径发电机,其中一条路径是深度生成的原因,其中间特征被注入另一个路径,作为外观渲染的条件。这样的设计可以通过明确的几何信息简化3D感知的合成。同时,我们引入了一个可切换的歧视器,以区分真实的V.S.假域并预测给定输入的深度。这样,歧视者可以考虑空间安排,并建议发电机学习适当的深度条件。广泛的实验结果表明,我们的方法能够以令人印象深刻的质量和3D一致性综合室内场景,并明显优于最先进的替代方案。

Despite the recent advancement of Generative Adversarial Networks (GANs) in learning 3D-aware image synthesis from 2D data, existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside. We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry. In this work, we fill in this gap by introducing depth as a 3D prior. Compared with other 3D data formats, depth better fits the convolution-based generation mechanism and is more easily accessible in practice. Specifically, we propose a dual-path generator, where one path is responsible for depth generation, whose intermediate features are injected into the other path as the condition for appearance rendering. Such a design eases the 3D-aware synthesis with explicit geometry information. Meanwhile, we introduce a switchable discriminator both to differentiate real v.s. fake domains and to predict the depth from a given input. In this way, the discriminator can take the spatial arrangement into account and advise the generator to learn an appropriate depth condition. Extensive experimental results suggest that our approach is capable of synthesizing indoor scenes with impressively good quality and 3D consistency, significantly outperforming state-of-the-art alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源