论文标题
通过使用其重力波信号来建立紧凑型物体合并二进制的二进制二进制
Towards establishing the presence or absence of horizons in coalescing binaries of compact objects by using their gravitational wave signals
论文作者
论文摘要
可以通过利用潮汐加热现象(TH)来帮助将黑洞(BH)与无线无向物体(GW)信号与合并紧凑型二进制物进行区分的寻求,从而有助于通过地平线参数,这使其在二元波形上留下了烙印。我们研究了TH对GWS探测地平线参数的可观察性的影响,主要是使用Fisher矩阵分析来确定它们之间的误差和协方差。 The horizon parameters are defined as $H_1$ and $H_2$ for the two binary components, with $H_{1,2} \in [0,1]$, and combined with the component masses and spins to form two new parameters, $H_{\rm eff5}$ and $H_{\rm eff8}$, to minimize their covariances in parameter estimation研究。在这项工作中,我们将阶段贡献添加到$ h _ {\ rm eff5} $和$ h _ {\ rm eff8} $方面,并将其测量错误与二进制的总质量,质量比,亮度距离和组件闪闪发光的变化。由于Fisher矩阵方法适合高信噪比,因此我们主要关注第三代(3G)GW探测器爱因斯坦望远镜和宇宙探险家,并使用Ligo和处女座进行比较。我们发现,总二进制质量的区域最精确的是$ h _ {\ rm eff5} $和$ h _ {\ rm eff8} $的$ h _ {\ rm eff8} $,是$ \ sim 20-30m_ \ odot $ for 3g detectors ligo -virgo和$ \ sim 50-80m_ \ odot $。较高的组件旋转可以更精确地测量$ H _ {\ rm eff5} $和$ h _ {\ rm eff8} $。对于位于200 MPC的二进制组件质量为$ 12M_ \ odot $和$ 18M_ \ odot $,相等的旋转$χ_1=χ_2= 0.8 $和$ h _ {\ rm eff5} = 0.6 $,$ h_ _ _ _ {\ rm eff8} = 12 $,$ 1- $ 1- $ $ $ sorters ard as 1- $ sorters is 1- $ sorrors $ \ sim 0.04 $分别在3G检测器中。我们通过一组贝叶斯模拟从Fisher研究中证实了我们的结果。
The quest for distinguishing black holes (BH) from horizonless compact objects using gravitational wave (GW) signals from coalescing compact binaries can be helped by utilizing the phenomenon of tidal heating (TH), which leaves its imprint on binary waveforms through the horizon parameters. We investigate the effects of TH on GWs to probe the observability of the horizon parameters, mainly using Fisher matrix analysis to determine the errors and covariances between them. The horizon parameters are defined as $H_1$ and $H_2$ for the two binary components, with $H_{1,2} \in [0,1]$, and combined with the component masses and spins to form two new parameters, $H_{\rm eff5}$ and $H_{\rm eff8}$, to minimize their covariances in parameter estimation studies. In this work, we add the phase contribution due to TH in terms of $H_{\rm eff5}$ and $H_{\rm eff8}$ to a post-Newtonian waveform and examine the variation of their measurement errors with the binary's total mass, mass ratio, luminosity distance, and component spins. Since the Fisher matrix approach works well for high signal-to-noise ratio, we focus mainly on third-generation (3G) GW detectors Einstein Telescope and Cosmic Explorer and use LIGO and Virgo for comparison. We find that the region in the total binary mass where measurements of $H_{\rm eff5}$ and $H_{\rm eff8}$ are most precise are $\sim 20 - 30M_\odot$ for LIGO-Virgo and $\sim 50 - 80M_\odot$ for 3G detectors. Higher component spins allow more precise measurements of $H_{\rm eff5}$ and $H_{\rm eff8}$. For a binary situated at 200 Mpc with component masses $12M_\odot$ and $18M_\odot$, equal spins $χ_1=χ_2=0.8$, and $H_{\rm eff5}=0.6$, $H_{\rm eff8}=12$, the 1-$σ$ errors in these two parameters are $\sim 0.01$ and $\sim 0.04$, respectively, in 3G detectors. We substantiate our results from Fisher studies with a set of Bayesian simulations.