论文标题
文章的科学声望:衡量单个文章在科学网络中的影响
Article's Scientific Prestige: measuring the impact of individual articles in the Web of Science
论文作者
论文摘要
我们对科学网络出版物进行了引用分析,其中包括超过6300万篇文章和14.5亿篇引用,从1981年到2020年,对254名受试者进行了引用。我们提出了该文章的科学声望(ASP)指标,并将该指标与大量互联网和跨性别的跨性别互联网的科学影响进行了比较。与#CIT,ASP相反,基于特征向量的中心性计算,考虑了直接和间接引用,并提供稳态评估交叉不同学科。我们发现,在大多数文章中,ASP和#CIT并不对齐,而被引用较少的文章的不匹配越来越不匹配。尽管这两个指标都可以可靠地评估诸如诺贝尔奖获奖文章之类的文章的声望,但当不引用这些文章时,ASP倾向于提供比#CIT更具说服力的排名。该期刊等级最终由一些高度引用的文章决定,无法正确反映单个文章的科学影响。参考文献和合着者的数量与科学影响不大,但受试者确实有所作为。
We performed a citation analysis on the Web of Science publications consisting of more than 63 million articles and 1.45 billion citations on 254 subjects from 1981 to 2020. We proposed the Article's Scientific Prestige (ASP) metric and compared this metric to number of citations (#Cit) and journal grade in measuring the scientific impact of individual articles in the large-scale hierarchical and multi-disciplined citation network. In contrast to #Cit, ASP, that is computed based on the eigenvector centrality, considers both direct and indirect citations, and provides steady-state evaluation cross different disciplines. We found that ASP and #Cit are not aligned for most articles, with a growing mismatch amongst the less cited articles. While both metrics are reliable for evaluating the prestige of articles such as Nobel Prize winning articles, ASP tends to provide more persuasive rankings than #Cit when the articles are not highly cited. The journal grade, that is eventually determined by a few highly cited articles, is unable to properly reflect the scientific impact of individual articles. The number of references and coauthors are less relevant to scientific impact, but subjects do make a difference.