论文标题

Cassiopeia的混合冷却中子恒星

Hybrid cooling of the Cassiopeia A neutron star

论文作者

Leinson, Lev B.

论文摘要

观察到的中子恒星Cassiopeia a的快速冷却通常被解释为由中子和质子从正常状态到超流体和超导状态的中子和质子的过渡引起的。但是,这种所谓的“最小”冷却范式面临着数值模拟中子中微子中微子能量损失中微子中子中微子损失中子中微子能量在数值上模拟观察到的快速下降的问题。作为解决这个问题的解决方案,我提出了一个更复杂的冷却模型,其中除了超氟中子外,还涉及来自中子星核的一个很小中央部分的直接URCA过程。在这种情况下,对冷却轨迹的数值模拟与观察到中子星的观察表现出了极好的一致性。提出的冷却场景明确地将状态方程与中子恒星的质量联系起来。对于根据状态的BSK25方程式构建的中子星,最合适的是质量$ m = 162万_ {\ sun} $和半径$ r = 12.36 $ km。如果使用BSK24方程式,则最合适的解决方案是$ M = 160m _ {\ sun} $和$ r = 12.55 $ km。

The observed rapid cooling of the neutron star Cassiopeia A is usually interpreted as being caused by transitions of neutrons and protons in the star's core from the normal state to the superfluid and superconducting state. However, this so-called "minimal" cooling paradigm faces the problem of numerically simulating the observed anomalously fast drop in the neutron star surface temperature using theoretical neutrino energy losses from superfluid neutrons. As a solution to this problem, I propose a somewhat more complex cooling model, in which, in addition to superfluid neutrons, direct Urca processes from a very small central part of the neutron star core are also involved. Numerical simulations of the cooling trajectory in this scenario show excellent agreement with observations of the Cassiopeia A neutron star. The proposed cooling scenario unambiguously relates the used equation of state and the mass of the neutron star. For a neutron star constructed according to BSk25 equation of state, the most appropriate are the mass $M=1.62M_{\sun}$ and the radius $R=12.36$ km. If BSk24 equation of state is used, then the most suitable solution is $M=1.60M_{\sun}$ and $R=12.55$ km.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源