论文标题

在Exascale计算和多尺度实验的时代的磁重新连接

Magnetic reconnection in the era of exascale computing and multiscale experiments

论文作者

Ji, Hantao, Daughton, William, Jara-Almonte, Jonathan, Le, Ari, Stanier, Adam, Yoo, Jongsoo

论文摘要

天体物理等离子体具有保持磁性拓扑的显着能力,这不可避免地会导致磁能在包括电流板在内的应力区域内的积累。这种存储的能量通常通过磁重新连接的过程爆炸,从而产生磁场的重新配置,以及高速流,热加热和非热粒子加速度。需要碰撞或动力学耗散机制来克服拓扑约束,这两者都是通过理论预测的,并通过原位航天器观测或实验室实验进行了验证。然而,在理解大型系统(例如太阳电晕)中的磁重新连接方面仍然存在重大挑战,在太阳能电晕上,碰撞较弱,并且与宏观尺度相比,动力学尺度很小。长期重新连接电流板中多个浆液的血浆不稳定性或形成是弥合这一广泛尺度的一种可能的多尺度解决方案,并且有准备研究这些方案的新实验室实验。结合了这些努力,我们预计,即将到来的Exascale计算时代以及下一代观察能力将在一系列具有挑战性的问题上,包括重新连接的能量积累和重新连接,部分离子化的制度,磁性湍流的影响以及颗粒加速能够在一系列具有挑战性的问题上做出新的进展。

Astrophysical plasmas have the remarkable ability to preserve magnetic topology, which inevitably gives rise to the accumulation of magnetic energy within stressed regions including current sheets. This stored energy is often released explosively through the process of magnetic reconnection, which produces a reconfiguration of the magnetic field, along with high-speed flows, thermal heating, and nonthermal particle acceleration. Either collisional or kinetic dissipation mechanisms are required to overcome the topological constraints, both of which have been predicted by theory and validated with in situ spacecraft observations or laboratory experiments. However, major challenges remain in understanding magnetic reconnection in large systems, such as the solar corona, where the collisionality is weak and the kinetic scales are vanishingly small in comparison to macroscopic scales. The plasmoid instability or formation of multiple plasmoids in long reconnecting current sheets is one possible multiscale solution for bridging this vast range of scales, and new laboratory experiments are poised to study these regimes. In conjunction with these efforts, we anticipate that the coming era of exascale computing, together with the next generation of observational capabilities, will enable new progress on a range of challenging problems, including the energy build-up and onset of reconnection, partially ionized regimes, the influence of magnetic turbulence, and particle acceleration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源