论文标题

随机cahn--hilliard方程的有限差异方法的收敛分析

Convergence analysis of a finite difference method for stochastic Cahn--Hilliard equation

论文作者

Hong, Jialin, Jin, Diancong, Sheng, Derui

论文摘要

本文介绍了随机cahn- hilliard方程的空间有限差法(FDM)的收敛分析,具有Lipschitz非线性和乘法噪声。基于对离散绿色函数的良好估计,我们证明了空间半差异溶液及其Malliavin衍生产品都具有强收敛顺序$ 1 $。此外,通过显示精确解决方案的负矩估计,我们可以获得空间半差异溶液的密度将$ l^1(\ mathbb r)$收敛到确切的元素。最后,我们应用指数的Euler方法来分散空间半差异数值解决方案,并表明暂时的强收敛顺序几乎是$ \ frac38 $,我们克服的困难就是得出空间半脱污方法的最佳Hölder连续性。

This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal Hölder continuity of the spatial semi-discrete numerical solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源