论文标题

通过对比度学习,在组织学图像中更好地理解和更好地概括了几乎没有的分类

Towards better understanding and better generalization of few-shot classification in histology images with contrastive learning

论文作者

Yang, Jiawei, Chen, Hanbo, Yan, Jiangpeng, Chen, Xiaoyu, Yao, Jianhua

论文摘要

几年来,很少有自然图像中的一个既定主题是一个既定的话题,但是对于组织学图像的工作很少,这具有很高的临床价值,因为标记良好的数据集和罕见的异常样本的收集昂贵。在这里,我们通过设置三个跨域任务来模拟真实的诊所问题,从而促进了组织学图像中几乎没有射击学习的研究。为了启用标签有效的学习和更好的概括性,我们建议将对比度学习(CL)与潜在的增强(LA)结合起来,以构建一些摄影系统。 CL学习无手动标签的有用表示,而LA则以无监督的方式传输基本数据集的语义变化。这两个组件充分利用未标记的培训数据,可以优雅地扩展到其他渴望的问题。在实验中,我们发现i)通过CL学到的模型比看不见的班级的组织学图像更好地概括了,而ii)la在基准方面带来了一致的收益。对自我监管学习的先前研究主要集中在类似图像的图像上,该图像仅在其中心呈现主要对象。最近对具有多物体和多纸张的图像引起了人们的注意。组织学图像是此类研究的自然选择。我们展示了CL优于监督学习的优势,这些学习对此类数据,并为这一观察提供了我们的经验理解。这项工作的发现可能有助于理解模型在表示学习和组织学图像分析的背景下如何概括。代码可用。

Few-shot learning is an established topic in natural images for years, but few work is attended to histology images, which is of high clinical value since well-labeled datasets and rare abnormal samples are expensive to collect. Here, we facilitate the study of few-shot learning in histology images by setting up three cross-domain tasks that simulate real clinics problems. To enable label-efficient learning and better generalizability, we propose to incorporate contrastive learning (CL) with latent augmentation (LA) to build a few-shot system. CL learns useful representations without manual labels, while LA transfers semantic variations of the base dataset in an unsupervised way. These two components fully exploit unlabeled training data and can scale gracefully to other label-hungry problems. In experiments, we find i) models learned by CL generalize better than supervised learning for histology images in unseen classes, and ii) LA brings consistent gains over baselines. Prior studies of self-supervised learning mainly focus on ImageNet-like images, which only present a dominant object in their centers. Recent attention has been paid to images with multi-objects and multi-textures. Histology images are a natural choice for such a study. We show the superiority of CL over supervised learning in terms of generalization for such data and provide our empirical understanding for this observation. The findings in this work could contribute to understanding how the model generalizes in the context of both representation learning and histological image analysis. Code is available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源