论文标题

雏菊立方体Wiener索引与莫斯塔尔指数之间的关系

A relation between Wiener index and Mostar index for daisy cubes

论文作者

Mollard, Michel

论文摘要

雏菊立方体是一类Hyperipubes Q n的等距亚图。雏菊立方体包括一些以前众所周知的图形系列,例如斐波那契立方体和卢卡斯立方体。此外,它们出现在化学图理论中。在数学化学的背景下,已经引入了两个距离不变的Wiener和Mostar指数。 Wiener索引W(g)是图G的所有无序对之间的距离之和。Mostar索引MO(G)是量度g g距离距离平衡的距离。在本文中,我们确定雏菊立方体G的Wiener和Mostar索引与关系2W(g)-MO(G)= | V(G)|| E(G)|。我们还为雏菊立方体提供了Wiener和Mostar指数的表达。

Daisy cubes are a class of isometric subgraphs of the hypercubes Q n. Daisy cubes include some previously well known families of graphs like Fibonacci cubes and Lucas cubes. Moreover they appear in chemical graph theory. Two distance invariants, Wiener and Mostar indices, have been introduced in the context of the mathematical chemistry. The Wiener index W (G) is the sum of distance between all unordered pairs of vertices of a graph G. The Mostar index Mo(G) is a measure of how far G is from being distance balanced. In this paper we establish that the Wiener and the Mostar indices of a daisy cube G are linked by the relation 2W (G) -- Mo(G) = |V (G)||E(G)|. We give also an expression of Wiener and Mostar indices for daisy cubes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源