论文标题

ZX-Diagram的电路提取可以是#p-hard

Circuit Extraction for ZX-diagrams can be #P-hard

论文作者

de Beaudrap, Niel, Kissinger, Aleks, van de Wetering, John

论文摘要

ZX-Calculus是一种用于使用ZX-DIAGRAS推理量子计算的图形语言,可以对量子电路进行一定的灵活概括,可用于表示线性地图从$ M $到$ n $ Qubits的任何$ M,N \ geq 0 $。 ZX-Calculus的某些应用,例如量子电路优化和合成,依赖于能够有效地将ZX-DIAGRAGRAM转换回具有可比大小的量子电路。尽管可以有效地将ZX-Diagram的家族描述为有效地转换为电路的ZX-Diagram的家族而闻名,但以前已经猜想了电路提取的一般问题很难。也就是说,不应有可能有效地将描述统一线性图的任意ZX-DIAGR转​​换为等效量子电路。在本文中,我们通过证明电路提取问题为#p-hard来证明这种猜想,因此本身至少与量子电路的强大模拟一样硬。除了我们的主要硬度结果(特别依赖电路表示)外,我们还给出表示反应的硬度结果。也就是说,我们表明,任何作为输入ZX-DAGRAGRAM的Oracle对单位的描述描述,并产生相关量子计算的输出的样本,可以使NP完全完整问题有效地概率解决方案。

The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear maps from $m$ to $n$ qubits for any $m,n \geq 0$. Some applications for the ZX-calculus, such as quantum circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into a quantum circuit of comparable size. While several sufficient conditions are known for describing families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously been conjectured that the general problem of circuit extraction is hard. That is, that it should not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum circuits. In addition to our main hardness result, which relies specifically on the circuit representation, we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as input a ZX-diagram description of a unitary and produces samples of the output of the associated quantum computation enables efficient probabilistic solutions to NP-complete problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源