论文标题

平面图拉恩的立方图和隔离循环的脱节结合

Planar Turán numbers of cubic graphs and disjoint union of cycles

论文作者

Lan, Yongxin, Shi, Yongtang, Song, Zi-Xia

论文摘要

图形$ h $的平面图,表示为$ ex _ {_ \ mathcal {p}}}}(n,h)$,是$ n $ dertices上平面图中的最大边数,而不包含$ h $作为子级。该概念是Dowden在2016年引入的,此后引起了很多关注。这些工作主要集中于查找$ ex _ {_ \ mathcal {p}}}}(n,h)$当$ h $是一个循环或theta图或$ h $的最高学位至少四个。在本文中,我们研究$ ex _ {_ \ Mathcal {p}}}}(n,h)$当$ h $是一个立方图或循环的不相交联合或$ h = k_ {s,t} $。

The planar Turán number of a graph $H$, denoted $ex_{_\mathcal{P}}(n,H)$, is the maximum number of edges in a planar graph on $n$ vertices without containing $H$ as a subgraph. This notion was introduced by Dowden in 2016 and has attracted quite some attention since then; those work mainly focus on finding $ex_{_\mathcal{P}}(n,H)$ when $H$ is a cycle or Theta graph or $H$ has maximum degree at least four. In this paper, we study $ex_{_\mathcal{P}}(n,H)$ when $H$ is a cubic graph or disjoint union of cycles or $H=K_{s, t}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源