论文标题

$ \ mathbb {q} $ - 曲线和lebesgue-nagell方程

$\mathbb{Q}$-curves and the Lebesgue-Nagell equation

论文作者

Bennett, Michael A., Michaud-Jacobs, Philippe, Siksek, Samir

论文摘要

在本文中,我们考虑方程\ [x^2 -q^{2k+1} = y^n,\ qquad q \ nmid x,\ quad 2 \ quad 2 \ mid y,\]对于整数$ x,q,q,k,y $和$ n $,带有$ k \ geq 0 $ and $ n $ and $ n \ geq 3 $。我们通过在$ q = 41 $和$ q = 97 $的情况下找到所有解决方案来扩展第一和第三名作者的工作。我们通过构建Frey-hellegouarch $ \ Mathbb {q} $ - 在实际二次字段$ k = \ mathbb {q}(\ sqrt {q})$上定义的曲线,并使用模块化方法与多折线技术。

In this paper, we consider the equation \[ x^2 - q^{2k+1} = y^n, \qquad q \nmid x, \quad 2 \mid y, \] for integers $x,q,k,y$ and $n$, with $k \geq 0$ and $n \geq 3$. We extend work of the first and third-named authors by finding all solutions in the cases $q= 41$ and $q = 97$. We do this by constructing a Frey-Hellegouarch $\mathbb{Q}$-curve defined over the real quadratic field $K=\mathbb{Q}(\sqrt{q})$, and using the modular method with multi-Frey techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源