论文标题

运动宏编程在辅助机器人操纵器上:日常任务的三种技能类型

Motion Macro Programming on Assistive Robotic Manipulators: Three Skill Types for Everyday Tasks

论文作者

Scherzinger, Stefan, Becker, Pascal, Roennau, Arne, Dillmann, Rüdiger

论文摘要

辅助机器人操纵者对残疾人变得越来越重要。在平凡的任务中,在平凡的任务中进行操作是他们日常生活的一部分。应用自我录制的运动宏无需引导机器人完成所有操作,可以极大地促进重复的任务。动态运动原语(DMP)是通过远距离学习技能学习的强大方法。但是,对于这种用例,他们需要简单的启发式方法来指定在没有计算机科学和学术传感器设置背景的无需自主感知背景的技能的何处。为了实现这一目标,本文提供了本地,全球和混合技能的概念,这些概念构成了构成日常生活任务的模块化基础。这些技能是隐式指定的,可以轻松地由用户自己编程,只需要其基本的机器人操纵器。该论文为机器人不合时宜的实现提供了所有详细信息。实验验证了用于示例性任务的开发方法,例如刮擦痒点,在桌子上对物体进行排序以及用硬币喂养小猪库。本文伴随着https://github.com/fzi-forschungszentrum-informatik/arne的开源实施

Assistive robotic manipulators are becoming increasingly important for people with disabilities. Teleoperating the manipulator in mundane tasks is part of their daily lives. Instead of steering the robot through all actions, applying self-recorded motion macros could greatly facilitate repetitive tasks. Dynamic Movement Primitives (DMP) are a powerful method for skill learning via teleoperation. For this use case, however, they need simple heuristics to specify where to start, stop, and parameterize a skill without a background in computer science and academic sensor setups for autonomous perception. To achieve this goal, this paper provides the concept of local, global, and hybrid skills that form a modular basis for composing single-handed tasks of daily living. These skills are specified implicitly and can easily be programmed by users themselves, requiring only their basic robotic manipulator. The paper contributes all details for robot-agnostic implementations. Experiments validate the developed methods for exemplary tasks, such as scratching an itchy spot, sorting objects on a desk, and feeding a piggy bank with coins. The paper is accompanied by an open-source implementation at https://github.com/fzi-forschungszentrum-informatik/ArNe

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源