论文标题
四维旋风螺母充电空间的一致质量公式
Consistent mass formulas for the four-dimensional dyonic NUT-charged spacetimes
论文作者
论文摘要
在我们以前的工作中,人们提倡将螺母电荷视为热力学多毛,以完美地描述通用四维taub-nut空间的热力学特征。根据该方案,komar质量M,重力 - 磁性电荷和/或双(磁性)质量N,以及新的次级头发J_N = Mn,即Kerr样的保守角动量,以Kerr样的保守角动量和Bekenstein-Smarr Mass Mose Formula的标准形式。与最近的其他尝试区别,我们一致的热力学差异和整体质量公式都可以从有意义的Christodoulou-ruffini-type平方平方质量公式中获得,几乎所有四维螺母充电的空位。非常好的结果,著名的Bekenstein-Hawking四分之一区域 - 注入关系不仅可以自然地在Lorentzian部门进行,而且可以在普通的Taub-Nut-Nut-type型平台的欧几里得对应物中进行,而无需施加任何约束条件。但是,在那里仅解决了具有螺母电荷的四维爱因斯坦 - 马克斯韦重力理论中的纯电荷病例。在本文中,我们将遵循该文章中提出的简单,系统的方式,以进一步调查敌对的螺母充电案例。结果表明,如果没有添加新的二级电荷,那么标准的热力学关系将继续保持真实,但是,所谓的静电和磁静态电势与通过标准方法计算的静电势不一致。为了纠正这种不一致性,通过进一步引入另外两个次生头发提供了一种简单的策略:q_n = qn = qn = qn and p_n = pn,以及它们的热力学共轭电位,以便仍然满足第一法和Bekenstein-Smarr质量公式。
In our previous work, a novel idea that the NUT charge can be thought of as a thermodynamical multi-hair has been advocated to describe perfectly the thermodynamical character of the generic four-dimensional Taub-NUT spacetimes. According to this scheme, the Komar mass M, the gravito-magnetic charge and/or the dual (magnetic) mass N, together with a new secondary hair J_N=MN, namely, a Kerr-like conserved angular momentum, enter into the standard forms of the first law and Bekenstein-Smarr mass formula. Distinguished from other recent attempts, our consistent thermodynamic differential and integral mass formulae are both obtainable from a meaningful Christodoulou-Ruffini-type squared mass formula of almost all of the four-dimensional NUT-charged spacetimes. As an excellent consequence, the famous Bekenstein-Hawking one-quarter area-entropy relation can be naturally restored not only in the Lorentzian sector and but also in the Euclidian counterpart of the generic Taub-NUT-type spacetimes without imposing any constraint condition. However, only purely electric-charged cases in the four-dimensional Einstein-Maxwell gravity theory with a NUT charge have been addressed there. In this paper, we shall follow the simple, systematic way proposed in that article to further investigate the dyonic NUT-charged case. It is shown that the standard thermodynamic relations continue to hold true provided that no new secondary charge is added, however, the so-obtained electrostatic and magneto-static potentials are not coincident with those computed via the standard method. To rectify this inconsistence, a simple strategy is provided by further introducing two additional secondary hairs: Q_N=QN and P_N=PN, together with their thermodynamical conjugate potentials, so that the first law and Bekenstein-Smarr mass formula are still satisfied.