论文标题

深度运动原始素:迈向乳腺癌检查机器人

Deep Movement Primitives: toward Breast Cancer Examination Robot

论文作者

Sanni, Oluwatoyin, Bonvicini, Giorgio, Khan, Muhammad Arshad, Lopez-Custodio, Pablo C., Nazari, Kiyanoush, E., Amir M. Ghalamzan

论文摘要

乳腺癌是全球最常见的癌症类型。执行自主乳房的机器人系统可以对全球相关的卫生部门产生重大影响。但是,用于用不同几何形状触摸乳房的机器人编程非常复杂且未解决。机器人从示范中学习(LFD)减少了编程时间和成本。但是,可用的LFD缺乏对操作路径/轨迹作为视觉感觉信息的明确函数的建模。本文提出了一种新型的操纵路径/轨迹计划的方法,称为“深度运动”,该方法成功地产生了操纵器的运动以达到乳房幻影并执行触诊。我们通过一系列实现和触诊乳房幻影的实验室实验来展示我们的方法的有效性。实验结果表明我们的方法的表现优于最新方法。

Breast cancer is the most common type of cancer worldwide. A robotic system performing autonomous breast palpation can make a significant impact on the related health sector worldwide. However, robot programming for breast palpating with different geometries is very complex and unsolved. Robot learning from demonstrations (LfD) reduces the programming time and cost. However, the available LfD are lacking the modelling of the manipulation path/trajectory as an explicit function of the visual sensory information. This paper presents a novel approach to manipulation path/trajectory planning called deep Movement Primitives that successfully generates the movements of a manipulator to reach a breast phantom and perform the palpation. We show the effectiveness of our approach by a series of real-robot experiments of reaching and palpating a breast phantom. The experimental results indicate our approach outperforms the state-of-the-art method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源