论文标题

旋转紧凑型二进制的机械法则:偶性顺序

First Law of Mechanics for Spinning Compact Binaries: Dipolar Order

论文作者

Ramond, Paul, Tiec, Alexandre Le

论文摘要

在艾耶(Iyer)和瓦尔德(Wald)的诺伊特(Noether)形式主义的基础上,我们得出了一个空位的差异公式,以承认杀戮载体领域,以进行一般的能量摩托车分布,并具有紧凑的支持。将此一般结果应用于沿着多极重力骨架形式上建模的旋转紧凑型物体的二元系统的特定情况,我们在偶极阶以紧凑型二元力学的第一定律得出。我们证明了这一新结果与以前针对旋转紧凑型物体的二元系统得出的典型的哈密顿第一定律的等效性,用于用轨道角动量旋转Colinear。本文为将二元力学的第一定律扩展到下一个四极阶铺平了道路,从而考虑了紧凑型身体的自旋诱导和潮汐诱导的可变形性。

Building upon the Noether charge formalism of Iyer and Wald, we derive a variational formula for spacetimes admitting a Killing vector field, for a generic energy-momentum distribution with compact support. Applying this general result to the particular case of a binary system of spinning compact objects moving along an exactly circular orbit, modelled using the multipolar gravitational skeleton formalism, we derive a first law of compact binary mechanics at dipolar order. We prove the equivalence of this new result with the canonical Hamiltonian first law previously derived for binary systems of spinning compact objects, for spins colinear with the orbital angular momentum. This paper paves the way to an extension of the first law of binary mechanics to the next quadrupolar order, thereby accounting for the spin-induced and tidally-induced deformability of the compact bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源