论文标题

评估工业控制系统的网络物理入侵检测和分类

Assessment of Cyber-Physical Intrusion Detection and Classification for Industrial Control Systems

论文作者

Müller, Nils, Ziras, Charalampos, Heussen, Kai

论文摘要

工业控制系统(ICS)与公共网络和数字设备的相互作用不断增加,引入了对电力系统和其他关键基础设施的新网络威胁。最近的网络物理攻击(例如Stuxnet和Indrognate)揭示了意外的ICS漏洞,并需要改善安全措施。入侵检测系统构成了一项关键的安全技术,该技术通常监视网络网络数据以检测恶意活动。但是,现代ICS的主要特征是物理和网络过程的相互依存的增加。因此,通过考虑物理约束和基本过程模式,网络和物理过程数据的集成被视为一种有前途的方法,可以提高ICS实时入侵检测的可预测性。这项工作系统地评估了基于机器学习的网络物理入侵检测和多级分类,通过将其基于网络数据的对应物进行比较以及对错误分类和检测延迟的评估。最近的网络物理数据集应用了多个监督检测和分类管道,该数据集描述了通用IC的各种网络攻击和物理缺陷。一个关键发现是,物理过程数据的集成改善了所有被考虑的攻击类型的检测和分类。此外,它可以同时处理攻击和故障,为整体跨域根引起识别铺平了道路。

The increasing interaction of industrial control systems (ICSs) with public networks and digital devices introduces new cyber threats to power systems and other critical infrastructure. Recent cyber-physical attacks such as Stuxnet and Irongate revealed unexpected ICS vulnerabilities and a need for improved security measures. Intrusion detection systems constitute a key security technology, which typically monitors cyber network data for detecting malicious activities. However, a central characteristic of modern ICSs is the increasing interdependency of physical and cyber network processes. Thus, the integration of network and physical process data is seen as a promising approach to improve predictability in real-time intrusion detection for ICSs by accounting for physical constraints and underlying process patterns. This work systematically assesses machine learning-based cyber-physical intrusion detection and multi-class classification through a comparison to its purely network data-based counterpart and evaluation of misclassifications and detection delay. Multiple supervised detection and classification pipelines are applied on a recent cyber-physical dataset, which describes various cyber attacks and physical faults on a generic ICS. A key finding is that the integration of physical process data improves detection and classification of all considered attack types. In addition, it enables simultaneous processing of attacks and faults, paving the way for holistic cross-domain root cause identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源