论文标题

学习通过气压触觉传感器和时间卷积神经网络检测滑移

Learning to Detect Slip with Barometric Tactile Sensors and a Temporal Convolutional Neural Network

论文作者

Grover, Abhinav, Nadeau, Philippe, Grebe, Christopher, Kelly, Jonathan

论文摘要

通过触觉反馈感知物体滑倒的能力使人类能够完成复杂的操纵任务,包括保持稳定的掌握。尽管触觉信息用于许多应用程序,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于从触觉数据流中确定滑移和其他事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。这些传感器具有许多理想的属性,包括高耐用性和可靠性,并且由廉价的现成组件构建。我们训练一个时间卷积神经网络来检测滑动,达到高检测精度,同时显示出稳健性,以对滑动运动的速度和方向。此外,我们在涉及各种常见对象的两个操纵任务上测试了探测器,并证明了对训练期间看不到的现实情况的成功概括。我们认为,气压触觉传感技术与数据驱动的学习相结合,适用于许多操纵任务,例如滑移补偿。

The ability to perceive object slip via tactile feedback enables humans to accomplish complex manipulation tasks including maintaining a stable grasp. Despite the utility of tactile information for many applications, tactile sensors have yet to be widely deployed in industrial robotics settings; part of the challenge lies in identifying slip and other events from the tactile data stream. In this paper, we present a learning-based method to detect slip using barometric tactile sensors. These sensors have many desirable properties including high durability and reliability, and are built from inexpensive, off-the-shelf components. We train a temporal convolution neural network to detect slip, achieving high detection accuracies while displaying robustness to the speed and direction of the slip motion. Further, we test our detector on two manipulation tasks involving a variety of common objects and demonstrate successful generalization to real-world scenarios not seen during training. We argue that barometric tactile sensing technology, combined with data-driven learning, is suitable for many manipulation tasks such as slip compensation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源