论文标题
关于对称游戏的矩阵方法
On Matrix Method of Symmetric Games
论文作者
论文摘要
本文提供了基于相邻的换位以测试对称游戏的新版本的矩阵半张镜产品方法。使用相邻换位的优点在于对对称游戏的分析进行了极大的简化。通过使用新方法,提出了对称游戏的新必要条件,并且可以轻松计算对称游戏空间的基础。此外,可以确定具有最小数量的测试方程。最后,显示了两个示例以显示所提出方法的有效性。
This paper provides a new version of matrix semi-tensor product method based on adjacent transpositions to test symmetric games. The advantage of using adjacent transpositions lies in the great simplification of analysis of symmetric games. By using the new method, new necessary and sufficient conditions for symmetric games are proposed, and a group of bases of a symmetric game space can be easily calculated. Moreover, the testing equations with the minimum number can be concretely determined. Finally, two examples are displayed to show the effectiveness of the proposed method.