论文标题

通过发现不搜索的地方学习逻辑程序

Learning logic programs by discovering where not to search

论文作者

Cropper, Andrew, Hocquette, Céline

论文摘要

归纳逻辑编程(ILP)的目的是搜索概括培训示例和背景知识(BK)的假设。为了提高性能,我们介绍了一种方法,该方法在搜索假设之前,首先发现不搜索的地方。我们使用给定的BK来发现对假设的限制,例如一个数字不能均匀且奇怪。我们使用约束来引导约束驱动的ILP系统。我们在多个领域(包括程序合成和游戏玩法)上进行的实验表明,我们的方法可以(i)将学习时间大大减少97%,以及(ii)扩展到具有数百万事实的域。

The goal of inductive logic programming (ILP) is to search for a hypothesis that generalises training examples and background knowledge (BK). To improve performance, we introduce an approach that, before searching for a hypothesis, first discovers where not to search. We use given BK to discover constraints on hypotheses, such as that a number cannot be both even and odd. We use the constraints to bootstrap a constraint-driven ILP system. Our experiments on multiple domains (including program synthesis and game playing) show that our approach can (i) substantially reduce learning times by up to 97%, and (ii) scale to domains with millions of facts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源