论文标题

量子蒙特卡洛数据随机分析延续的进展

Progress on stochastic analytic continuation of quantum Monte Carlo data

论文作者

Shao, Hui, Sandvik, Anders W.

论文摘要

我们报告了量子蒙特卡洛数据的数值分析延续的随机平均方法的多收益进展。随着采样频谱在连续频率空间中用delta功能进行了参数,配置熵的计算将支持简单的拟合度标准提供支持,以实现最佳采样温度。为了进一步研究熵效应,我们比较了连续频率采样的光谱与在固定频率网格上采样的振幅的结果。我们以不同形式的熵的最大渗透方法来证明采样和优化光谱函数之间的等价性。这些见解修改了最大渗透方法的普遍概念及其与随机分析延续的关系。我们进一步探索了各种可调(优化的)约束,这些约束允许解决锋利的光谱特征,尤其是在较低的频率边缘。使用统计标准优化了约束,例如,准粒子峰的边缘或光谱重量的位置。我们表明,该方法可以正确复制狭窄和宽的准粒子峰。接下来,我们引入一个参数化,以实现具有锋利边缘(例如幂律奇异性)的更复杂的光谱函数。使用合成数据以及用于Spin-1/2 Heisenberg链的实际仿真数据的测试表明,受约束的采样方法可以在前所未有的忠诚度以尖锐的边缘特征来重现光谱函数。我们提出了S = 1/2 Heisenberg 2-Leg和3腿梯的新结果,以说明方法解决基本和复合激发产生的光谱特征的能力。最后,我们还提出了如何将这里开发的方法用作通过机器学习进行分析延续的“预处理器”。

We report multipronged progress on the stochastic averaging approach to numerical analytic continuation of quantum Monte Carlo data. With the sampled spectrum parametrized with delta-functions in continuous frequency space, a calculation of the configurational entropy lends support to a simple goodness-of-fit criterion for the optimal sampling temperature. To further investigate entropic effects, we compare spectra sampled in continuous frequency with results of amplitudes sampled on a fixed frequency grid. We demonstrate equivalences between sampling and optimizing spectral functions with the maximum-entropy approach with different forms of the entropy. These insights revise prevailing notions of the maximum-entropy method and its relationship to stochastic analytic continuation. We further explore various adjustable (optimized) constraints that allow sharp spectral features to be resolved, in particular at the lower frequency edge. The constraints, e.g., the location of the edge or the spectral weight of a quasi-particle peak, are optimized using a statistical criterion. We show that this method can correctly reproduce both narrow and broad quasi-particle peaks. We next introduce a parametrization for more intricate spectral functions with sharp edges, e.g., power-law singularities. Tests with synthetic data as well as with real simulation data for the spin-1/2 Heisenberg chain demonstrate that constrained sampling methods can reproduce spectral functions with sharp edge features at unprecedented fidelity. We present new results for S=1/2 Heisenberg 2-leg and 3-leg ladders to illustrate the ability of the methods to resolve spectral features arising from both elementary and composite excitations. Finally, we also propose how the methods developed here could be used as "pre processors" for analytic continuation by machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源