论文标题

在两个自变量中,pdes的三阶仿射不变(系统)消失了。

Third-order affine-invariant (systems of) PDEs in two independent variables as vanishing of the Fubini-Pick invariant

论文作者

Alekseevsky, Dmitri, Manno, Gianni, Moreno, Giovanni

论文摘要

在本文中,我们研究了两个独立变量$ x,y $和一个不变的函数$ u $在$ 3^{\ mathrm {rd}} $ order(of System of PDES的系统中),与仿射转换$ \ mathrm {aff}(aff}(3)$ $ \ \ m i \ mathbbbb {r} r} r} $ \ mathrm {aff}(aff}(3)$)相对于一组不变的函数$ u $。在证明了它们与fubini-pick不变的关系之后,我们使用[d.v. d.v. Alekseevsky,J。Gutt,G。Manno和G. Moreno:在同质流形上构建不变的{pdes}的一般方法。当代数学的通信(2021)],阐明了它们的一些几何特性。

In this paper we study $3^{\mathrm{rd}}$ order (system of) PDEs in two independent variables $x,y$ and one unknown function $u$ that are invariant with respect to the group of affine transformation $\mathrm{Aff}(3)$ of $\mathbb{R}^3=\{(x,y,u)\}$. After proving their relationship with the Fubini-Pick invariant, we derive the aforementioned PDEs by using a general method introduced in [D.V. Alekseevsky, J. Gutt, G. Manno, and G. Moreno: A general method to construct invariant {PDEs} on homogeneous manifolds. Communications in Contemporary Mathematics (2021)], which sheds light on some of their geometrical properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源