论文标题
学习低度超图
Learning Low Degree Hypergraphs
论文作者
论文摘要
我们研究了通过边缘检测查询学习超图的问题。在此问题中,学习者查询隐藏超图的顶点的子集,并观察这些子集是否包含边缘。通常,学习具有最大尺寸$ d $的$ m $边缘的超图需要$ω((2m/d)^{d/2})$查询。在本文中,我们旨在确定可以在不遭受查询复杂性的情况下学习的超图的家庭,该查询复杂性在边缘的大小上呈指数增长。 我们表明,使用Poly $(n)$ Queries可以学习高度匹配和低度近均匀的超图。对于学习超匹配(最大程度的超图$ 1 $),我们给出了$ O(\ log^3 n)$ - 圆形算法,并使用$ O(n \ log^5 n)$查询。我们通过表明没有算法的poly $(n)$查询来补充这种上限,这些算法在$ o(\ log \ log n)$自适应回合中学习超匹配。对于具有最高度$δ$和边缘尺寸比率$ρ$的超图,我们给出了一种非自适应算法,并使用$ o(((2n)^{ρδ+1} \ log log^2 n)$查询。据我们所知,这些是使用Poly $(n,m)$查询复杂性的第一批算法,用于学习超恒定数量超恒定尺寸边缘的非平凡家族。
We study the problem of learning a hypergraph via edge detecting queries. In this problem, a learner queries subsets of vertices of a hidden hypergraph and observes whether these subsets contain an edge or not. In general, learning a hypergraph with $m$ edges of maximum size $d$ requires $Ω((2m/d)^{d/2})$ queries. In this paper, we aim to identify families of hypergraphs that can be learned without suffering from a query complexity that grows exponentially in the size of the edges. We show that hypermatchings and low-degree near-uniform hypergraphs with $n$ vertices are learnable with poly$(n)$ queries. For learning hypermatchings (hypergraphs of maximum degree $ 1$), we give an $O(\log^3 n)$-round algorithm with $O(n \log^5 n)$ queries. We complement this upper bound by showing that there are no algorithms with poly$(n)$ queries that learn hypermatchings in $o(\log \log n)$ adaptive rounds. For hypergraphs with maximum degree $Δ$ and edge size ratio $ρ$, we give a non-adaptive algorithm with $O((2n)^{ρΔ+1}\log^2 n)$ queries. To the best of our knowledge, these are the first algorithms with poly$(n, m)$ query complexity for learning non-trivial families of hypergraphs that have a super-constant number of edges of super-constant size.