论文标题

弱信息的先验和先前的数据冲突检查是否无可能推理

Weakly informative priors and prior-data conflict checking for likelihood-free inference

论文作者

Chakraborty, Atlanta, Nott, David J., Evans, Michael

论文摘要

贝叶斯无可能的推断,用于在棘手的可能性时用来执行贝叶斯推断,享有越来越多的重要科学应用。但是,在无可能的环境中,贝叶斯分析的许多方面变得更加具有挑战性。一个例子是先前的数据冲突检查,目的是评估数据中的信息和先验中的信息是否不一致。这种冲突对于检测很重要,因为它们可能会在研究者对参数相关值的理解中揭示问题,并且可能导致贝叶斯对先前的推论敏感。在这里,我们考虑用于先前数据冲突检查的方法,无论可能性是否适用,这些方法都是适用的。在构建检查时,我们考虑基于先前到后的Kullback-Leibler Diverences检查统计信息。使用混合物对后验分布的混合物近似和闭合形式的近似值来实施检查,以使混合物的混合物差异,这使得蒙特卡洛近似参考分布的校准了计算可行性。当发生先前的数据冲突时,将替代分析中弱信息的先验规格视为灵敏度分析的一部分是有用的。作为我们方法论的主要应用,我们开发了一种技术,用于寻找无可能无可能无需推断的弱提供的先验,在这种情况下,使用Prif-Data冲突检查正式化了弱信息的先验概念。这些方法在三个示例中得到了证明。

Bayesian likelihood-free inference, which is used to perform Bayesian inference when the likelihood is intractable, enjoys an increasing number of important scientific applications. However, many aspects of a Bayesian analysis become more challenging in the likelihood-free setting. One example of this is prior-data conflict checking, where the goal is to assess whether the information in the data and the prior are inconsistent. Conflicts of this kind are important to detect, since they may reveal problems in an investigator's understanding of what are relevant values of the parameters, and can result in sensitivity of Bayesian inferences to the prior. Here we consider methods for prior-data conflict checking which are applicable regardless of whether the likelihood is tractable or not. In constructing our checks, we consider checking statistics based on prior-to-posterior Kullback-Leibler divergences. The checks are implemented using mixture approximations to the posterior distribution and closed-form approximations to Kullback-Leibler divergences for mixtures, which make Monte Carlo approximation of reference distributions for calibration computationally feasible. When prior-data conflicts occur, it is useful to consider weakly informative prior specifications in alternative analyses as part of a sensitivity analysis. As a main application of our methodology, we develop a technique for searching for weakly informative priors in likelihood-free inference, where the notion of a weakly informative prior is formalized using prior-data conflict checks. The methods are demonstrated in three examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源