论文标题
$ d = 4 $ cfts带有爱因斯坦重力双重的近似对称性
Approximate Symmetries in $d=4$ CFTs with an Einstein Gravity Dual
论文作者
论文摘要
通过两次应用应力调整量表量操作员产品扩展(OPE),我们在$ d = 4 $保形场理论(CFTS)中搜索具有纯爱因斯坦重力双重双重的代数结构。我们发现,在$ d = 2 $平面上的应力张量$ t^{++} $的积分定义的重新定义的操作员在标量尺寸较大时满足类似virasoro的代数。如果我们合并了$ t^{ - } $组件,则可以增强该结构,以包括kac-moody型代数。在我们的计划中,中心术语是有限的。直接计算$ d = 4 $标量的四点功能的应力调整扇区在大中心电荷下的应力调整扇区最近,基于全息和引导方法,最近显示出具有Virasoro/$ {\ cal W} $ - 代数真空块状结构。
By applying the stress-tensor-scalar operator product expansion (OPE) twice, we search for algebraic structures in $d=4$ conformal field theories (CFTs) with a pure Einstein gravity dual. We find that a rescaled mode operator defined by an integral of the stress tensor $T^{++}$ on a $d=2$ plane satisfies a Virasoro-like algebra when the dimension of the scalar is large. The structure is enhanced to include a Kac-Moody-type algebra if we incorporate the $T^{--}$ component. In our scheme, the central terms are finite. It remains challenging to directly compute the stress-tensor sector of $d=4$ scalar four-point functions at large central charge, which, based on holography and bootstrap methods, were recently shown to have a Virasoro/${\cal W}$-algebra vacuum block-like structure.