论文标题
有限群体承认满足额外多项式身份的企业自动形态
Finite groups admitting a coprime automorphism satisfying an additional polynomial identity
论文作者
论文摘要
众所周知,具有自动形态$φ$的有限群体的可溶性自由基为$(|φ|,| c_g(φ)|)$ - 有限的拟合高度和索引。我们扩展了这个经典结果,如下所示。令$ f(x)= a_0 + a_1 \ cdot x + \ cdots + a _d \ cdot x^d \ in \ mathbb {z} [z} [x] $是一个原始的多项式,让$ g $为有限的群体,是一个有限型组,带有自动化订单的$ g^$ g^cdot cdot cdot cd {a_0} a_0} a_0} {a_0} \cdotsφ^d(g)^{a_d} = 1 $,对于g $中的所有$ g \。然后,$ g $的可溶性根部具有$(d,| c_g(φ)|)$ - 绑定拟合高度和索引。界限是明确的,对于$ d $的少量值特别有利。
It is known that a finite group with an automorphism $φ$ of coprime order has a soluble radical of $(|φ|,|C_G(φ)|)$-bounded Fitting height and index. We extend this classic result as follows. Let $f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]$ be a primitive polynomial and let $G$ be a finite group with an automorphism $φ$ of coprime order satisfying $ g^{a_0} \cdot φ(g)^{a_1} \cdots φ^d(g)^{a_d} = 1 $, for all $g \in G$. Then the soluble radical of $G$ has $(d,|C_G(φ)|)$-boundex Fitting height and index. The bounds are made explicit and are particularly good for small values of the degree $d$.