论文标题

从时间序列数据中推断出具有不可观察的节点的网络结构

Inferring Network Structure with Unobservable Nodes from Time Series Data

论文作者

Chen, Mengyuan, Zhang, Yan, Zhang, Zhang, Du, Lun, Zhang, Jiang

论文摘要

网络结构在社会,技术和生物系统中起重要作用。但是,由于测量错误,私人保护问题或其他问题,实际情况下可观察到的节点和连接通常是不完整或不可用的。因此,推断完整的网络结构对于理解人类的相互作用和复杂的动态非常有用。现有研究尚未完全解决有关连接或节点的部分信息推断网络结构的问题。在本文中,我们通过使用网络动力学生成的时间序列数据来解决问题。我们将基于动态时间序列数据的网络推断问题视为最小化可观察到的节点状态的错误的问题,并提出了一种新型的数据驱动的深度学习模型,称为Gumbel-Softmax的网络推断(GIN),以在不完整的信息中解决该问题。杜松子酒框架包括三个模块:动态学习者,网络生成器和初始状态生成器,以推断网络的不可观察到的部分。我们实施具有离散和连续动态的人工和经验社交网络的实验。实验表明,我们的方法可以推断结构的未知部分和可观察到的节点的初始状态,其精度最高为90 \%。准确性随着无法观察到的节点的分数增加而线性下降。我们的框架可能具有广泛的应用程序,在这些应用程序中很难获得网络结构,并且时间序列数据很丰富。

Network structures play important roles in social, technological and biological systems. However, the observable nodes and connections in real cases are often incomplete or unavailable due to measurement errors, private protection issues, or other problems. Therefore, inferring the complete network structure is useful for understanding human interactions and complex dynamics. The existing studies have not fully solved the problem of inferring network structure with partial information about connections or nodes. In this paper, we tackle the problem by utilizing time-series data generated by network dynamics. We regard the network inference problem based on dynamical time series data as a problem of minimizing errors for predicting states of observable nodes and proposed a novel data-driven deep learning model called Gumbel-softmax Inference for Network (GIN) to solve the problem under incomplete information. The GIN framework includes three modules: a dynamics learner, a network generator, and an initial state generator to infer the unobservable parts of the network. We implement experiments on artificial and empirical social networks with discrete and continuous dynamics. The experiments show that our method can infer the unknown parts of the structure and the initial states of the observable nodes with up to 90\% accuracy. The accuracy declines linearly with the increase of the fractions of unobservable nodes. Our framework may have wide applications where the network structure is hard to obtain and the time series data is rich.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源