论文标题
洛伦兹 - 融合的动力学理论,用于巨大的自旋1/2颗粒
Lorentz-covariant kinetic theory for massive spin-1/2 particles
论文作者
论文摘要
我们构建一个矩阵值旋转依赖性分布函数(MVSD),以进行大量的自旋1/2费米子,并研究其在洛伦兹变换下的性质。这种转换导致自旋空间中的旋转和时空的非平凡基质值变化,这对应于无质量的情况下的侧跳。我们根据MVSD表达Wigner函数的矢量和轴向矢量成分,并表明它们以Lorentz-Covariant的方式转换。然后,我们构建一个明显的洛伦兹 - 融合玻尔兹曼方程,其中包含一个非本地碰撞项编码自旋轨道耦合。最后,我们通过要求详细的平衡来获得局部平衡中自旋依赖性分布函数。
We construct a matrix-valued spin-dependent distribution function (MVSD) for massive spin-1/2 fermions and study its properties under Lorentz transformations. Such transformations result in a Wigner rotation in spin space and in a nontrivial matrix-valued shift in space-time, which corresponds to the side jump in the massless case. We express the vector and axial-vector components of the Wigner function in terms of the MVSD and show that they transform in a Lorentz-covariant manner. We then construct a manifestly Lorentz-covariant Boltzmann equation which contains a nonlocal collision term encoding spin-orbit coupling. Finally, we obtain the spin-dependent distribution function in local equilibrium by demanding detailed balance.