论文标题
基于边缘数据的预告片构成上下文感知电影推荐的概率矩阵分解
Edge Data Based Trailer Inception Probabilistic Matrix Factorization for Context-Aware Movie Recommendation
论文作者
论文摘要
移动设备和网络边缘部署的应用程序生成的边缘数据的快速增长加剧了信息过载的问题。作为减轻信息过载的有效方法,建议系统可以通过稀疏的评分数据来添加用户在边缘设备(例如视觉和文本信息)上生成的应用程序数据来提高各种服务的质量。电影预告片中的视觉信息是电影推荐系统的重要组成部分。但是,由于视觉信息提取的复杂性,仅通过使用粗糙的视觉特征来提高评级预测准确性,就不能明显缓解数据稀疏性。幸运的是,卷积神经网络可用于精确提取视觉特征。因此,可以利用端到端神经图像标题(NIC)模型来获取描述电影预告片的视觉特征的文本信息。本文提出了一个称为Ti-PMF的预告片构成概率矩阵分解模型,该模型结合了NIC,经常性卷积神经网络,概率矩阵分解模型作为评级预测模型。我们通过在三个现实世界数据集上进行了广泛的实验来实施提出的TI-PMF模型,以验证其有效性。实验结果表明,所提出的TI-PMF优于现有的TI-PMF。
The rapid growth of edge data generated by mobile devices and applications deployed at the edge of the network has exacerbated the problem of information overload. As an effective way to alleviate information overload, recommender system can improve the quality of various services by adding application data generated by users on edge devices, such as visual and textual information, on the basis of sparse rating data. The visual information in the movie trailer is a significant part of the movie recommender system. However, due to the complexity of visual information extraction, data sparsity cannot be remarkably alleviated by merely using the rough visual features to improve the rating prediction accuracy. Fortunately, the convolutional neural network can be used to extract the visual features precisely. Therefore, the end-to-end neural image caption (NIC) model can be utilized to obtain the textual information describing the visual features of movie trailers. This paper proposes a trailer inception probabilistic matrix factorization model called Ti-PMF, which combines NIC, recurrent convolutional neural network, and probabilistic matrix factorization models as the rating prediction model. We implement the proposed Ti-PMF model with extensive experiments on three real-world datasets to validate its effectiveness. The experimental results illustrate that the proposed Ti-PMF outperforms the existing ones.