论文标题

关于图形信号处理中的本地分布

On Local Distributions in Graph Signal Processing

论文作者

Roddenberry, T. Mitchell, Gama, Fernando, Baraniuk, Richard G., Segarra, Santiago

论文摘要

图形过滤是图形信号处理(GSP)中的基石操作。因此,理解它是开发有效GSP方法的关键。图形过滤器是局部和分布式线性操作,其输出仅取决于每个节点的本地邻域。此外,可以通过与直接邻居进行重复交换,在每个节点上分别计算出图过滤器的输出。图形过滤器可以被压缩为图形移动器的多项式(通常是图形的稀疏矩阵描述)。这导致将过滤器的属性与相应矩阵的光谱属性相关联 - 编码图形的全局结构。在这项工作中,我们提出了一个仅依赖图形邻居的本地分布的框架。这种方法的症结在于用根的球的可测量空间来描述图和图信号。利用这一点,我们能够无缝比较不同大小和来自不同模型的图表,从而产生了光谱密度的收敛性,跨任意图的过滤器的可传递性以及相对于局部亚基分布的图形信号性能的连续性。

Graph filtering is the cornerstone operation in graph signal processing (GSP). Thus, understanding it is key in developing potent GSP methods. Graph filters are local and distributed linear operations, whose output depends only on the local neighborhood of each node. Moreover, a graph filter's output can be computed separately at each node by carrying out repeated exchanges with immediate neighbors. Graph filters can be compactly written as polynomials of a graph shift operator (typically, a sparse matrix description of the graph). This has led to relating the properties of the filters with the spectral properties of the corresponding matrix -- which encodes global structure of the graph. In this work, we propose a framework that relies solely on the local distribution of the neighborhoods of a graph. The crux of this approach is to describe graphs and graph signals in terms of a measurable space of rooted balls. Leveraging this, we are able to seamlessly compare graphs of different sizes and coming from different models, yielding results on the convergence of spectral densities, transferability of filters across arbitrary graphs, and continuity of graph signal properties with respect to the distribution of local substructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源