论文标题
切割和连续糊至实时深秋季检测
Cut and Continuous Paste towards Real-time Deep Fall Detection
论文作者
论文摘要
基于深度学习的秋季检测是智能视频监视系统的关键任务之一,该任务旨在检测人类的无意跌倒和危险的情况。在这项工作中,我们提出了一个简单有效的框架,以通过单个和小型卷积神经网络检测跌落。为此,我们首先引入了一种新的图像合成方法,该方法代表人类运动中的单一帧。这将秋季检测任务简化为图像分类任务。此外,提出的合成数据生成方法使得能够生成足够数量的训练数据集,即使使用小型模型,也会产生令人满意的性能。在推论步骤中,我们还通过估计输入帧的平均值来代表单个图像中的真实人类运动。在实验中,我们对URFD和AIHUB机场数据集进行了定性和定量评估,以显示我们方法的有效性。
Deep learning based fall detection is one of the crucial tasks for intelligent video surveillance systems, which aims to detect unintentional falls of humans and alarm dangerous situations. In this work, we propose a simple and efficient framework to detect falls through a single and small-sized convolutional neural network. To this end, we first introduce a new image synthesis method that represents human motion in a single frame. This simplifies the fall detection task as an image classification task. Besides, the proposed synthetic data generation method enables to generate a sufficient amount of training dataset, resulting in satisfactory performance even with the small model. At the inference step, we also represent real human motion in a single image by estimating mean of input frames. In the experiment, we conduct both qualitative and quantitative evaluations on URFD and AIHub airport datasets to show the effectiveness of our method.