论文标题

抗社会代数

Anti-associative algebras

论文作者

Remm, Elisabeth

论文摘要

抗社会代数是一种非缔合代数,其乘法满足身份A(BC)+(AB)C = 0。这样的代数是nilpotent。我们描述了具有有限数量的发电机的自由反缔约代数。通过极化过程(例如Jacobi-Jordan代数,或通过变形量化获得)获得的其他类型的非缔合代数与该类别的代数相关。在Markl-Remms工作之后,我们描述了与这些代数类别相关的作战,尤其是与变形有关的共同体学络合物。

An anti-associative algebra is a nonassociative algebra whose multiplication satisfies the identity a(bc)+(ab)c=0. Such algebras are nilpotent. We describe the free anti-associative algebras with a finite number of generators. Other types of nonassociative algebras, obtained either by the process of polarization, such as Jacobi-Jordan algebras, or obtained by deformation quantization, are associated with this class of algebras. Following Markl-Remms work, we describe the operads associated with these algebra classes and in particular the cohomology complexes in relation to deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源