论文标题
边界Lipschitz的常规解决方案,用于发散形式的一般半线性椭圆方程
Boundary Lipschitz regularity of solutions for general semilinear elliptic equations in divergence form
论文作者
论文摘要
在本文中,我们研究了有关以差异形式的一般半线性椭圆方程的非均匀性差异问题。我们确定在系数,边界,边界函数和非均匀项上的一些较弱条件下,解决方案的边界LIPSCHITZ规律性。特别是,我们假设非均匀术语满足DINI连续性条件和Lipschitz Newtonian潜在条件,这将是获得溶液的边界lipschitz正常性的最佳条件。
In this paper, we study the nonhomogeneous Dirichlet problem concerning general semilinear elliptic equations in divergence form. We establish that the boundary Lipschitz regularity of solutions under some more weaker conditions on the coefficients, the boundary, the boundary function and the nonhomogeneous term. In particular, we assume that the nonhomogeneous term satisfies Dini continuity condition and Lipschitz Newtonian potential condition, which will be the optimal conditions to obtain the boundary Lipschitz regularity of solutions.